Mathematical structures in logic Exercise classes 3-4

Heyting algebras, Boolean algebras

February 20-27, 2017

(1) Let A_1, A_2 and A_3 be the following posets

- (a) Convince yourself that A_1, A_2 and A_3 are all Heyting algebras.
- (b) Identify the joins and the pseudo-complements in A_1 , A_2 and A_3 .
- (c) Is A_1 isomorphic to a bounded sublattice (Heyting subalgebra) of A_2 or A_3 ?
- (2) (Atoms and co-atoms)
 - (a) Describe atoms and co-atoms on a Boolean algebra of the form $\wp(X)$.
 - (b) Show that in every Boolean algebra, if a is an atom, then $\neg a$ is a co-atom.
 - (c) Find a Heyting algebra A with an atom a such that $\neg a$ is not a co-atom
- (3) Show that the lattice $(\operatorname{Cofin}(\mathbb{N}) \cup \{\emptyset\}, \subseteq)$ of cofinite subsets of \mathbb{N} (together with \emptyset) is a bounded distributive lattice. Is L a complete lattice? Is it a Heyting algebra?
- (4) Show that not every bounded distributive lattice is isomorphic to the lattice of upsets of some poset.
- (5) We abbreviate $a \to 0$ with $\neg a$. Show that in every Heyting algebra
 - (a) $a \wedge \neg a = 0$ but not necessarily $a \vee \neg a = 1$;
 - (b) $a \le b$ iff $a \to b = 1$;
 - (c) $a \leq \neg \neg a$;

- (d) $\neg a \land \neg b = \neg (a \lor b);$
- (e) $\neg a \lor \neg b \le \neg (a \land b)$ but not necessarily $\neg (a \land b) \le \neg a \lor \neg b$
- (f) $a \to (b \to c) = (a \land b) \to c$;
- (g) $b \le c \implies a \to b \le a \to c$;
- (h) $b \le c \implies c \to a \le b \to a$.

Additional exercises

- (6) Let A be a Boolean algebra. Show that $a \wedge b = \neg(\neg a \vee \neg b)$ and $a \vee b = \neg(\neg a \wedge \neg b)$
- (7) Let A_2 and A_3 be as in exercise 1.
 - (a) Is A_2 isomorphic to a bounded sublattice (Heyting subalgebra) of A_3 ?
 - (b) Is there a surjective bounded lattice (Heyting algebra) homomorphism from A_3 to A_2 ?
- (8) Let L be a bounded distributive lattice. Show that pairs of complemented elements of L are in one-to-one correspondence with decompositions of the form $L \cong L_1 \times L_2$. (Hint: Try to understand first what this means for powerset lattices.)
- (9) For people who know some category theory: Given a poset (P, \leq) we can see it as a category having P as objects and there is a morphism from p to q iff $p \leq q$. Try to connect the notions of lattice theory that we encountered so far (suprema, infima, bounds, Heyting implications, complements, ...) to categorical structure (such as products, coproducts, ...).